AUTHOR
TITLE
PUB DATE NOTE

PUB TYPE

EDRS PRICE DESCRIPTORS

IDENTIFIIERS

McKenzie; Phillip
The Distribution of School Size: Some Cost.
Implications.
Apr 83
2lp.; Paper presented at the Annual Meeting of the American Educational Research Association (Montreal, Quebec, Canada, April 11-15, 1983).
Reports - Reséarch/Technical (143) -Speeches/Conference Paperśs (150) -- Tésts/Evaluation Instruments (160)

MFOl/PCOl Plus Postage.
*Cost Effectiveness; Educational Economics;
Educational Finance; Efficiency; Elementary Secondary Education; *Enrollment; *Expenditure Per Student; Foreigñ. Countries; Input Output Analysis;
Mathematical Formulas; Operating Expenses; *Proof (Mathematics); Public Schools; Relocation; School Demography; *School District Spending; *School Size
Australia

ABSTRACT

The first part of this paper discusses two principal forms elaborated upon. in previous literature for describing the relation between per pupil operating costs and school enrollment size. The first of these forms indicates. that average per pupil costs decline up to a point as enrollment incréases, reach a minimum, and then rise with further school enrollment. size increases. The other major school cost-size relationship form indicates that average costs do not reach a minimum, but rather decline at a decreasing fate as encollments increase. The following two sections elaborate on the interaction between these forms, schdăl enrollment size, and cost distribtuion characteristics. The second section focuses on the relation between school size distribution and marginal and variable (or total) costs. Next, the author provides a formal proof of the dispersion-costs relationship presented in terms of a U-shaped marginal costs curve that initially declines and then rises. The paper concludes with a discussion of the analysis policy implications, which include the need to monitor. demographic factors likely to influence school enrollment size distribution and to plan school facilities to respond flexibly to changing enrollment patterns. The paper includes illustrative references to studies of Australian public school systems: (JBM)

[^0]U.B. DEPARTMENT OF EDUCATION NATIONAL INSTITUTE OF EDUCATION. EDUCATIONAL RESDURCES INFORMATION CENTEA (ERICI
This document has been reproduced as
received from the person or organization orginating it. Minor chunges have been made to improve reproduction quatity.

- Points of view or opirtons stated in this docu ment do not nencessariy represent official NIE position of policy.
"PERMISSION TO REPRODUCE THIS MATERIAL HAS BEEN GRANTED BY

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)."

THE DISTRIBUTION OF SCHOOL SIZE: SOME COST IMPLICATIONS

Phillip McKenzie
Australian Council for Educational Research

1

Paper presented to the Annual Meeting of the American Educational Re'search Association

A school system, whether it is organized on a district, state or national basis, comprises a collection of schools whose individuml patterns of enrollment growth and decine are likely to be uneven. Accordingly, it is unlikely that the distribution by enrollment size of the schools contained within a school system will be stable over time. u Since the total costs incurred by a school system will be largaly determined by the costs of operating the individual schoole in that system, and as there is considerable evidence that school enrollment size influences per pupil costs, changes in the distribution by enrollment size $\dot{m} a y$ be expected to have cost implications. This paper attempts to elaborate some of these implications. .

A distribution of schools by enrollment size, like any distribution, may be characterized in terms of measures of central tendency, dispersion, skemess and kurtosis. Analysis of the cost ifplications of changes in the first two of these mesures is the central concern of the paper. In order to discern the likely size and direction of the cost implications of changes in these parameters, it is necessary to be aware of the function which desaribes the relation between per pupil operating costs and school enrollment size in the school system under consideration. Accordingly, the first part of the paper is devoted to an eramination of the two principal forms of this function which havo been identified by the school cost-size literature. In the second and third sections the interaction between these forms, characteristics of the distribution of school enrollment size and costs is eiaborated. The paper
"concludes with a brief discussion of some of the policy implications of the analysis. Thrónghout the paperisillustrative references are made to studies of the sovernment'(public) school systems of Anstralia.

Studies of the Schoo1-Size Reletionship

In"principle, to isolate the impact of 'school enrollment size on per pupil school costs, it is necessary to detolenine the least-cost, combination of inputs able to produce a prespecified level of educational output at each enrolliment level (Cohn, 1975). If this procedure is followed, it is then possible; by controlling for differences in the level and quality of inputs and ontputs, to estimate the relationship between school enrollment size and per pupil school costs However, the conceptual and empirical difficulties associated with a procedure of the type just described have meant that few, if any, school cost-size studies have incorporated all of its elements. Such difficulties are not o surprising since specification of a cost function of school enrollment size requires the prior specification of a production function of schooling, and the latter task fas, thus far, proven lifigely resistant to research offorts.

As a result, most studies reported in the school cost-size literature do not incorporate cost functions in their true sense, but rather represent attempts to assess how various categories of educational expenditure vaxy with school enrollment size, sometimes with a narrow measure. of student performance as quality control, but more often with student numbers as the output proxy (Fox, 1981). Even within this less ambitious framework, difficulties of data collection have generally.
excluded expenditure on capital facilities from analysis. Accordingly, the cost curves so estimated provide little guidance for the longer term in which both capital and labour inputs are able to vary (ibid).

The concepțual and empiricel difficulties of school cost-size research that have been outlined in seneral form above and which are, discussed in more detail by Cohn (1975), Hind (1977) and Fox (1981) raise questions about its utility for policy purposes. However, confidence in the two mąjor forms of shool cost functions that have been identified is increased by the fact that their behaviour accords closely with the two major types of cost functions that have been identified for a wide rifge of publíc enterprises, priyate manufacturing and retail industries (Mansfield, 1975 reviews a number of such studies).

One major form of the relationship between per pupil school operiting costs (hereinafter referred to as avorage costs or AC) and school enrollment that can be identified fron the school-cost size Iiterature is represented in Figure 1. Under this formation, average costs are U-shaped which indicates that they deciine as enrollments
Per Pupi1
Costs
P

Figure 1. U-Shaped Average Cost Curve
increase up to*a certain point, riach a miniman and then rise with further increases in school onrollment size. . Average cost functions of this. seneral fórm have beon identified by Riew (1966) for Wisconsin high schools and by Cohn (1968) for Iowa high schools, amongst others (Fox, . 1981 provides an extensive compilation of the relevant studies).
A. \mathbf{U}-shaped average cost curve will be described by the following functional form:

$$
\begin{equation*}
A C=\mathbf{a}-b E+c E^{2} \tag{1}
\end{equation*}
$$

where $E=$ school enrollment,
and a, b and c are constants, all of which $\geqslant 0$.
Since average costs equal total costs divided by enrollments; equation (1) will have associated with it a total cost (TC) function as follows:

$$
\begin{equation*}
\mathbf{T C}=a \mathrm{E}-\mathrm{bE}+\mathbf{c} \mathrm{E}^{3} \tag{2}
\end{equation*}
$$

Furthermore, since marsinal costs (MC) are dofined as the increase in total costs resulting from ancincrease in enrollment, a marginal cost function can be derived which is the first derivative of the total cost function: •

$$
\begin{equation*}
M C=a-2 b E+3 c E^{2} \tag{3}
\end{equation*}
$$

As shown in Figure 1, an AC curve which is D -shaped will have associated With it a marginal cost curve, also \mathbb{U}-shaped, which initially lies below the AC curye, reaches a minimum and then rises to cut the AC curve at its minimum point. As will be elaborated in the next section, it is the properties of the MC curve which are of particular importance in assessing
the cost implications of changes in the distribution of school enrollment size.

The other major form of the school cost-size relationship is.shown in Figure 2 in which the AC curve is a rectangular hyperbola, indicating

Figure" 2. Hyperbolic Average Cost Function
that average costs do not reach a minimum, but rather deciine ata decreasing rate as enrollments increase. . Studies which have found such a curve to be the most powerful form of the school cost-size relationship include those of elementary and secondary schools in British Columbia (Wales, 1973) and rural primary (elementary) schools in New South Wales (Hind, 1977). The functional form which describes strch a curve is as follows:

$$
\begin{equation*}
\mathrm{AC}=\mathrm{d}+\mathrm{fE}^{-1} \tag{44}
\end{equation*}
$$

vhere d and f are constant and >0.

The total cost function which applies to equation (4) has total costs as a linear function of enrollments:

$$
\begin{equation*}
T C=\mathbf{f}+\mathrm{dE} \tag{5}
\end{equation*}
$$

Accordingly; as marsinal costs are the first derivative of total costs, the MC function in this instance is represented by a straight line:

$$
\begin{equation*}
\mathrm{MC}=\mathrm{d} \tag{6}
\end{equation*}
$$

As is shown in Figure, 2, under such a formulation average costs approach, but never ineot, the marginal cost line.

It is beyond the scope of this paper to evaluate the competing merits of two types of the AC curves described above as the most appropriate description of the behaviour of school costs. It may well be the case that a complete specification of the school cost-size relation in school systems which contain schools with' very large enrollments could result in an AC curve which may te closer in shape to a flat-bottomed Dshaped curve with average costs relatively constant over a large part of the enrollment range. Such a curve puld combine elements of both Figures 1 and 2.

Some support for this contention comes from Australia and New Zealand where the schedules by which sovernment school systens allocate teachers to schools of different sizes result in marginal cost curves Which decline as enrollments increase \quad pp to certain point and then are relatively constant over the remainder of the enrollyent range (McKenzie and Keeves, 1982). Ina addition, recent evidence indicates that school emrollment size may be negatively related to cognitive outcomes (Summers and Volfe, 1977) and affective outcomes (Campbell, Cotterell, Robinson and Sadler, 1979). To the extent that these findings are valid and generalizable, they sugest that those studies which did not control for
quality of ontpuit and which estimated an AC function of the type shown in Figure 2, if respecified conld show that average costs eventually increase "becanse additional resources are neded to maintain the quality of student ontcomes. In the contert of the present paper the importance of aflat. bottomed U -shaped AC curve is that it would be associated with an MC curve of a similar shape. That is, marginal costs conld be expected to initially decline, remain relatively constant for a large part of the enrollment range and then to eventually rise above the $A C$ curve.

The rest of the paper is predicated on the view that oither the AC curve represented in Figure 1, or that shown in Figure 2 conld best describe the behaviour of average costs in any particilar school system. However, the cost implications of changes in the size distribution of schools Will depend upon which type of function does apply in the school system under consideration since each implies different form of MC function. It is to the relation between marginal costs and the -distribution of school size that we now tury.

Marginal Costs and the Distribution of School Size

The purpose of the preceding section was to indicate that studies of the school-cost size relation have produced estimates of AC functions which imply that the marginal cost curve may, on the one hand, be $\quad \mathrm{D}$ shaped, or on the other, hand, may not change as school enrollment size increases. The shape of the margind cost curve is critical in assessing the cost implications of changes in the distribution of school enrollment size since between any two enrollment levels the area beneath the MC crive
measures the change in total costs (or variable costs) associated witha change in enroliments from one level to the other. This arises because the variable'cost associated with a iven change of output is the sum of . the marginal cost of each incromental unit of output (Mahanty, 1980).

Figure 3 illustrates the principles involved. In the Figure are shown average and marginal cost curves of similar shape to those discussed

Per Pupil
Costs

Figure 3. , Marginal Cost Curve and Variable Costs With an increase in school enrollments from 700 to 800 students. Similarly, area BCEF measures the decrease in total costs as shool enrollments decline from 900 to 800 students. Since area ABDE exceeds area BCEF, this implies "that given the cost relations pictured, it is less costly to cońduct a school with 700 students and a school with 900 students than it is to operate two schools each containing 800 students, This position arises becanse the decrease in total cost associated with
transferring 100 students from the school with 900 students (that is, area BCEF) is less than the consequent increase in total costs as the school with 700° students grows to 800 students (that is, area ABDE).

It was an illustration of this type that led Burke, Hudson and Gould (1981) to conciude that under conditions where the marginal cost of enfolling an additional student declines as school enrollment size incresses, a reduction in the dispersion of the distribution of school size around the mean will increase per pupil school costs, other factors remaining equal. A formal proof of this relation is, developed later in the .paper.

The malysis of Burke ot al (1981) only examined the influence of changes in the dispersion of school size on costs under the siturtion where marginal costs are declining. Figure 3 indicates, however, that
 then commence to rise as enrollments increase. Indeed, marginal costs may even be rising while average costs continue to fall.

It is a straightforward matter to extend the analysis to incorporate those situations in which marginal costs are either rising or constant. Over the enrollment range where marginal costs are rising, a reduction in the dispersion of schoil size could be expected to reduce costs since the decline in total cost associated with any fiven decrease in enrollment size will exceed the incresse in total cost arising from an increase in enrollment size of the same magnitude. Over the enrollment range where marginal costs are constant, a change in the dispersion of school size should not affect total costs, other factors remaining constant, since the inčrease in total cost associated with any
enrollment increase is equally matched by the decrease in total cost cansed by an enrollment decrease of the same size. 'This implies that in those school systems where the school cost-size relationship conld be characterized by the cost curves in Figure 2 , changes in the dispersion of school size should not affect total costs, other factors remaining equal.

A Formal Proof

The proof of the relationship between dispersion and costs elaborated above is prezented in terms of the U-shaped, MC cutve described by equation (3) since this function produces an MC curve which initially declines and then rises. To isolate the cost implications of changes in dispersion, it is assumed that average school size remains constant.

The area under the MC curve between any two enrollment levels represents the change in total costs associated vith achange in enrollments ${ }^{\circ}$ between those two leveĺs. Accordingly, the increase in total. costs associated with a change in enrollments frome.to of is measured by

$$
\begin{equation*}
\int_{0}^{\mathrm{e}+1}(\mathrm{MC}) \mathrm{dE} \tag{7}
\end{equation*}
$$

By substitution of equation (3), this expands to,

$$
\begin{equation*}
\int_{0}^{e+1}\left(a-2 b E+3 c E^{2}\right) d E \tag{8}
\end{equation*}
$$

If there exist two school's, each. with enrollment e, for the mean school size to be maintained, increase in enrollments at one school frome to e+1 must be matched by a decrease in onrollments at the other shool from e to e-1. The decrease in total costs as enrollment declines frome to . e-1 is given by

$$
\begin{equation*}
\int_{e-1}^{e}\left(a-2 b E+3 c E^{2}\right) d E \tag{9}
\end{equation*}
$$

Hence, the net change in total costs associated with the enrollment changes just. described will be mussured by

$$
\begin{equation*}
\int_{\mathrm{e}-1}^{e}\left(\mathrm{a}-2 \mathrm{bE}+3 \mathrm{cE}^{2}\right) \mathrm{de}-\int_{e}^{e+1}\left(\mathrm{a}-2 \mathrm{bE}+3 \mathrm{cE}^{2}\right) \mathrm{de} \tag{10}
\end{equation*}
$$

- Through expansion and cancellation, expression (10) reduces to $\mathbf{2 b}$ 6ce.If the simplified form of expression (10) is positive, this means thit the decrease in total cost associated with the onrollment decline from o to e-1 exceeds the increase in total cost generated by a rise in enrollment size from o țo e+1.

The next stage of the proof involves the calculation of a value for the simplified form of expression (10) under conditions when marginal costs are changing. The enrollment range over which marginal costs decline will be considered initially. Marginal costs decline in the enrollment range which lies to the loft of the minimum point of the MC curve. Since, from equation (3)

$$
\begin{align*}
& M C=a-2 b E+3 c E^{2} \\
& \frac{d M C}{d E}=-2 b+6 c E \tag{11}
\end{align*}
$$

Marginal costs reach their minimum point \cdot when $\frac{d M C}{d E}=0$, and which from expression (11) will be given by the point at which enrollments equal $\frac{b}{3 c}$. Hence, the enrollment range under consideration in this example (namely, from e-1 to e+1) will be to the left of the minimum point of the MC curve if
*

$$
\begin{equation*}
e=\frac{b}{3 c} \quad-k-1 \text { where } k>0 . \tag{12}
\end{equation*}
$$

When expression (12) is substituted in the simplified form of expression (10), the net result is $6 \mathrm{c}(\mathrm{k}+1)$. Since both c and k are positive, this expression must be positive, which demonstrates that under conditions of declining marginal costs an increase in the dispersion of school size leads to a reduction in costs, other factors constant.

- Under conditions where marginal costs are increasing, the range of. enrollments under consideration lies to the right of the minimum point of the MC curve and therefore

$$
\begin{equation*}
e=\frac{b}{3 c}+k+1 \text { where } k>0 \tag{13}
\end{equation*}
$$

Subititution of (13) into expression (10) gives the net result $\mathbf{- 6}(\mathbf{k}+1)$ which must be negative. Thus, under conditions where the MC chrve is rising, the magnitude of the decrease in total costs associated with a deciine/in enrollment is less than the size of the increase in total costs associated with an enrollment increase of equal magnitude. Therefore, where marginal costs are rising, an increase in the dispersion of school size increases costs, other factors constant.

The Interaction of Average School Size and Dispersion

In the previous section the cost implications of changes in the dispersion of school size were invostigated under conditions in which the average school size was constant. This procedure was adopted so that the independent effects of changes in dispersion could be addressed. In
practice, however, it is more likely that averge school size and dispersion will. both be in a process of change over time. As a further complication, such changes need not necessarily be of the same order of magnitude, nor even in the same direction. The purpose of this section is to determine the likely cost implications of joint changes in average school size and the dispersion of school size around this average.

To commence, the cost implications of changes in average school size under conditions in which the dispersion of school size is held constant will be examined. To simplify the discussion, changes in the size of schools that lie in the enrollment range indicated by Figure 1 Which shows a positive relation between enrollment size and per pupil costs will be excluded from analysis. The complerities introduced by a school system which comprises some schools that lie in the enrollment range whére AC deciines and others that lie where AC rises run the risk of obscuring the exposition of the general relations between mean size and dispersion which is the major purpose of this paper: Hovever, as indicated by Figure 1, a U-shaped AC function implies that for at least part of the enrollment range where AC deciines, marginal costs are rising and this position is not excluded from the following analysis. An increase in marginal costs is also characteristic of the enrollment range Where the AC curve rises. Accordingly, the discussion of the impact of changes in the distribution of school size over the enrollment range where marginal costs rise, does provide some gaidance for the likely cost implications of changes in the enrollment range where average costs rise. For the school systems which contain schools which lie along the full range of enrollments represented by a-shape AC curve, a more
complete analysis would require knowledge of this distribution so that the different cost implications of changes in school size could be appropriately weighted.

- 0

With the simplifying assumption that we are only concerned with that part of the enroliment range oveŕ which average costs decline as school errollment size increases, the cost implications of changes in s average school under conditions where the dispersion of school size remains constant can now be assessed. To assist this process, an example is provided which uses the AC fanction estimated by Cohn (1968) for Iowa high schools. The function estimated by Cohn was

$$
A C=390.05-0.1775 E+0.0000537 E^{2}
$$

This function can be ased to compile a table of the costs of providing schools of different sizes:

School Enrollment	Per Pupil Cost (\$)	Tota1 Cost (\$)
150	365	342
300	303	102600
600	287	181800
750	254	215250
1200		304800

8
These cost data can be insed to assess the impact on costs of changes in average school size under different assumptions about school size. dispersion. This is done in the following table for a simple system comprising just two schools.

Enrollmont Size
$\begin{array}{rr}600, & 1200 \\ 150, & 750\end{array}$
300, 600

Mean

900 450 450

Standerd Deviation

300 $300 \quad 270000$
150°

Total Cost

486600 270000 284400

270
300 316

As the table illustrates, although the 50 per cent decline is average school had, as expectied, the effect of increasing per pupil costs, the increase was more marked when the proportionate decine in enrollment was spread uqually amongst the two schools so, that the absolute measure of dispersion declined. Since, as demonstrated in the previous section, over the enrollment range in which marginal costs decline, a reduction in dispersion increases costs, the net effect has been that the rise in average costs associated with a decline in average school size is exacerbated if the pattern of enrollment decline is spread amongst schools in such a way that dispersion is reduced. If, on the other hand, the enrollment decline occurred over an enroliment range in which marginal coets were increasing, the effect would be reversed: a reduction in dispersion would tend to offset some of the incresse, in per pupil costs. It is possible toraxtend this type of analysis to ali the possible combinations of changes in'average school size and dispersion under conditions in which marginal costs are either falling or rising. In summary, it can be demonstrated that where marginal costs deciine as enrollment size increases,

1. A reduction in dispersion will tend to exacerbate the increase in per pupil costs associated vith a decline in average school size, and offset the decrease in per
pupil costs associated with an increase in average school size.
2. An increase in dispersion will tend to offset the increase in per pupil costs associated with a docline in average schbol size, and reinforce the decroase in, per pupil costs associated with an increase in average school size.

Under conditions where marginal costs increase as enrollment size increases, thereffects of changes in dispersion will work in the opposite direction to those just described.

There is some empirical support for these propositions provided by the behaviour of teacher salary costs in Australian government school systems. As documented by McKenzie and Keeves (1982), the schedules by which the number and seniority classifications of teachers in Australian government schools of different sizes are determined suggest marginal cost. curves which oxhibit a slight decline over a considerable part of the enrollment range. Accordingly, it could be expected that, for example, those Australian government school systems which experienced a reduction in both dispersion and average school size over the 1970 's, per pupil costs could have been expected to rise considerably. Data presented by Burke et al (1981) suggests that this did occur. For example, betreen 1971 an 1980 the average primaxy school size in the Australian Capital Territory deciined from 505 to 395 students and the student deviation of school size decreased from 196 to 158 over the same period. These changes were accompanied by an increase in per pupil costs greater than that which could have been expected on the basis of the decline in average school
costs alone (ibid), which supports the contention that the reduction in dispersion exacerbated the increase.

θ In Conclusion

8
The preceding analysis has highlighted the potential importance of changes in the dispersion of school size as actor influenfing changes in the per pupil costs of schcol systems. In practice, the extent to which changes in the dispersion of school size are likely to have important cost implications will depend initially upon the shape of the average cost function which applies to the system under cqnsideration. For those school systems in which the allocation of teachers and other resource's to school results in an average cost function of the type . described in Figure 2, changes in the dispersion of school size are unlikely to have significant cost ramifications. However, it should be noted that the cost functions which have formed, the basis for this analysis have been primarily based on studies of recurrent costs. To the extent that changes in the dispersion of shool size severely overtaix capital facilities at individual schools, the cost implications of course may be considerable, no matter what the shape of the curve relating ts and encollments.

For those school systems characterized by cost functions of a form which indicates that there may be cost implications associated with changes in the distribution of school enrollment size, an awareness of such implications is likely to feed directly into 'educational policy formulation in several ways. First, it underlines the importance of an active monitoring of the demographic and ot;er factors likely to influence
the distribution of school enrollnent size. Secondily, it promotes an awareness of the need to plan school facilities which are also to respond flexibly to changes in enrollment patterns. Thirdly, it concentrates attention on policies which may 1 imit the potentially harmful consequences of increased educational costs generated by changes in the distribution of - . school size. Finally, an awareness, of the cost implications of changes in the distribution of school enrollment size should lead to more thorough search for the potential effects on the spread of school size of policies whose prisary aim is not directly concerned with school size. For example, policies which increase parental freedom of choice in the selection of sthool for their children could in some instances lead to an increase in school size dispersion as childran transfer to more popular schools. On the other hand, if such policies are accompanies by greater ' autonomy for schools to develop specialized programs, average school size and dispersion may both be reduced. Assessment of the school size implications of such policies increases the likelihood that sufficientresources can be fade available to ensure their success.

Reforences

Burke, G., Hudson, H. and Gould, \mathbf{K}. The Chansing-Patterns of School Enrollment and Thoir Implications for Educational Policy and Manatement. Melbourne: Australian Education Council, 1981.

Campbe11, W., Cotterell, J., Robinson, N. and Sadler, D. Effects of School Size Upon Some Aspects of Personality. Canberra: ERDC, 1979.

Cohn, E. Economies of scale in Iown high school operations. Journal of Human Resonrces, 1968, 3, 422-34.

Cohn, E. A proposal for school size incentives in state aid to education. Journal of Educational Finance, 1975, 1, 216-25.

Fox, W. Reviewing economies of size in education. Journal of Educationel Finance, 1981, 6, 273-96.

Hind, I. Estimates of cost functions for primary schoiols in rural areas. Australian Journal of Agricultural Economic:, 1977, 21, 13-25.

McKenzie, P. and Keoves, J. Eight Educstion Systems: Resonfce Allocation Policies in the Government School Systems of Anstralis snd Now Zoaland. Hawthorn, Vic.: ACER, 1982.

Makanty, A. Intermediate Microeconomies Witi Applications. Now York; Academic Press, 1980.

Mansfield, E. Microcconomics: Theory and Application. Now York: Wharton, 1975.
Riew, J. Economies of scale in high school operations. Reviem of Economics and Statistics, 1966, 48, 280-7.

Summers, A. and Wolfe, B. Do schools make a difforence? Amorican Economic Review, 1977, 67, 639-52. 4
Wales, T. The effect of school and district size on education costs in British Columbia. International Economic Reviev, 1973, 14, 710-20.

[^0]:

 * Reproductions supplied by EDRS are the best that can be made * \quad * * from the original document: \quad *

